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In the analysis of the effect of rotation on turbulent flow in channels whose center 
line is perpendicular to the axis of rotation it is necessary to differentiate direct effects 
due to nonconservative Coriolis force on the generation (source) of turbulent energy and 
changes in turbulence characteristics caused by the restructuring of the flow field by the 
mean velocity, i.e., indirect effects. Effects of the first group are observed in the "pure" 
form in the flow along plane parallel channel whose walls are parallel to the axis of rota- 
tion [I]. Various attempts to model these effects are considered in [2, 3]. Effects of the 
second group are fundamental in the flow through channels with the dominating role played by 
walls normal to the axis of rotation. 

The global restructuring of the mean velocity field caused by rotation, which involves 
the production of the core of the flow with homogeneous velocity distribution along lines 
parallel to the axis of rotation, and formation of thin wall layers, leads to strong varia- 
tions in turbulence characteristics [4, 5]. As indicated by experimental data on the drag 
coefficient [4, 5], rotation at a certain high speed can even lead to laminarization of an 
initially turbulent flow. With further increase in the angular speed, a rapid increase in 
pressure loss is observed (almost proportional to i/2). In particular, in the case of flows 
through the cooling ducts of the rotors of powerful motors, it is this aspect of the effect 
of the Coriolis force on turbulent flow that appears to be most important. Conditions under 
which Coriolis forces disturb the flow are studied with numerical modeling in [6, 7]. Results 
of numerical modeling are presented below for the simplified representation of strong effects 
of rotation caused by restructuring of the mean velocity field, including laminarization. 

I. Consider incompressible flow through a prismatic slot-shaped channel, whose long, 
parallel sides are at a distance 2h apart. The channel rotates at a constant angular speed 

about an axis perpendicular to the channel walls. The role of the short side walls in the 
formulation of the problem is to determine the direction of the total mass transfer. 

We introduce Cartesian coordinates fixed to the channel and oriented such that the y 
axis is along the axis of rotation, the z axis is parallel to the channel walls in the flow 
direction, and the origin is located at the midplane of the channel. Assuming that the mean 
flow is steady and fully developed along the streamwise coordinate z, we neglect the end 
effects at bounding side walls. Thus the velocity field and turbulence characteristics are 
assumed to depend only on the transverse coordinate y. 

Introducing modified pressure p* = (<p>/p) -- (1/2)w2r 2 (r is the shortest distance to 
the axis of rotation), and taking the above assumptions into consideration, we write Reynolds 
equations 

d ( dU __ <uv> ) Op* d (v dW ) Op* -- 2~U~ 
a--7 \ --s = ~ + 2 ~ W '  7 f  - 7 7 - - < m Y >  = o~ " ~ ( 1 . 1 )  

with boundary conditions 

and integral relations 

U - - - - W = O  at y = •  

h h 

J" w ,  = 2hw , = o, 
- -h  - - h  

( 1 . 2 )  

(I .3) 

whose first equation reflects constant mass flow in the direction of z (W m = const is the 
mean flow rate) while the second equation is the result of no-slip conditions at the side 
walls of the channel. 
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It is seen that the quantity p* should be a linear function of coordinates x, z, i.e., 
p* = Ax + Bz + C, where A, B, and C are constants. 

The closure of the problem is achieved by assuming the scalar nature of the turbulent 
eddy viscosity coefficient ~t 

dW 
au -<w~>=~t ey - -  <uv>  = v t dy ' (1 .4) 

and we use the (k -- a) model of turbulence [8] which is suitable for the computation of flows 
with low turbulent Reynolds numbers (k is the turbulent kinetic energy and e is its rate of 
dissipation). 

In the present problem the Coriolis body force vector lies in the plane perpendicular 
to the direction of velocity displacement. Analysis of the differential equations for Rey- 
nolds stresses shows that in the given situation there is no basis to expect appreciable di- 
rect effects due to rotation on turbulent transfer. In any case, errors arising from the 
negligence of direct effects are of the same order as that introduced by the assumption of the 
scalar nature of the quantity vt- In this sense, the present flow is similar to the flow on 
a rotating disk. Approbation of the (k -- E)model in computing the flow around a rotating 
disk [9] may be considered extremely successful. The above-mentioned conditions and conclu- 
sions [10] relative to the values of empirical constants determined the use of (k -- c) model 
[8] in the same form 

[ ~t)x~dk-~yj,] \( dkl/2dy 7~2 ~-~ (v+ = - - P + e + 2 v  

P = vt i \ ' - ~ f ]  + \ - -~ ' - J  3" 

G~ = vvt T L \  d~ ] -  k dy ] J J (1.5) 
k 2 

vt - -  c~ exp [ - -  2,5/(t  + 1t%/50)] --g-, 

k e 
] ~ = l , 0 - - 0 , 3 e x p ( - - R e ~ ) ,  B e t - -  r e '  

c 1 = 1,55, c 2 = 2,0, c a = 2,0, c 4 = 0,09, a~ = t , 3 ,  

k = O ,  ~----0 at g=-+-h, 

As an  e x a m p l e  o f  f l o w  c h a r a c t e r i s t i c s  we c h o o s e  R e y n o l d s  n u m b e r  Re = 2Wmh/v a n d  T = 
m h 2 / v .  We i n t r o d u c e  t h e  n o n d i m e n s i o n a l  c o o r d i n a t e  ~ = y / h  and  i n  d i s c u s s i n g  r e s u l t s  o f  t h e  
s o l u t i o n  t o  t h e  p r o b l e m  ( 1 . 1 ) - ( 1 . 5 )  we k e e p  i n  v i e w  f l o w  sy rmne t ry  r e l a t i v e  t o  t h e  p l a n e  y = 0 .  

2 .  I n t e g r a t i o n  o f  a n o n l i n e a r  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s  f o r  U, W, k ,  a n d  c was 
c a r r i e d  o u t  n u m e r i c a l l y  u s i n g  a c o n s e r v a t i v e  f i n i t e - d i f f e r e n c e  scheme  w i t h  n o n u n i f o r m  g r i d  [ 1 1 ] .  
C o n c e n t r a t i o n  o f  g r i d  p o i n t s  n e a r  t h e  w a l l  was a c h i e v e d  u s i n g  t h e  g e o m e t r i c  p r o g r e s s i o n  

~ra = ~i l--qm-i l - - q  2, M ,  l--q ' ~i-- l__qM_l , Irt 

where ~ = I -- n; M is the number of grid points in the interval 0 ~< ~ ~< I. 

Relaxation technique was used to obtain the stationary solution. The fictitious time- 
interval T m was changed from grid point to grid point in proportion to the local interval in 
time T m = a(~m+z -- ~m), while the relaxation process remained unchanged. 

The method used to linearize equations for k and c determines, to a large extent, the 
permissible time interval, in particular the factor ~. 
effectiveness of using the following linearization: 

d , dkn+~ ] 
�9 i" m 

~m V " Jr" O'--'~-]n d'---~- J C i ki-~ 

Systematic computations showed the 

kn. =2v[,-7#-y ) '  
8nBn + 1 

_ _  C2fp~ k n 
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At each new (n + I) time-interval the system of algebraic equations for kn+l, m and 
gn+ 1 m were solved using a shooting technique for scalar equations and the system for Un+z, m 
and ~n+z,m was solved simultaneously with shooting technique for three-point vector equations. 

Prandtl's hypothesis was used to determine the initial distribution for W0(y). The mix- 
ing length ~ was given by thePrandtl--Nikuradze relation with van Driest correction [12]. It was 
assumed that U0(y) = 0. Initial distributions for k0 and g0 were determined using the Towns- 
end equation 

ko(y) = --co <wv> = col2~W/dy)  ~, Co = i 0 / 3  

and assuming local equilibrium in turbulence g0 = P0(Y). The initial distributions thus de- 
termined approximately describe the fields W, k, and g in the turbulent flow along a fixed 
plane plane-parallel channel. 

Basic computations were carried out with M = 51 (q = 1.1) and M = 101 (q = 1.04). Laminar 
flow in a slot-like channel whose analytical solution is known [13], and computed results for 

turbulent flow in a fixed channel [8, 14] using the same turbulence model, were used as test 
cases. Practically coincident results were obtained in all cases. 

3. The effect of rotation on the same velocity field and turbulent energy is illustrated 
in Fig. I, where Re = 30,400, curves I-4 correspond to y = 0; 1000; 2000; and 2500. The 
streamwise velocity component W c at the center section was used as the reference. The velocity 
profile W~ = W(q)/W c gets fuller with an increase in rotational speed. The flow is di- 
vided into a core with uniform velocity distribution and a shear layer near the wall called 
the Ekman layer. The circulation in the transverse direction initially increases with y, 
attains a maximum, and then decreases as in the case of laminar flow [13], whereas, during 
this process, the function ~(y) = max {U~ is monotonic. 

The major content in the transformation of the k ~ field is the production of fluctuating 
flow in the core. It is important to mention that the level of turbulent kinetic energy in 
the wall layer undergoes a relatively small change. A sharp, almost catastropic reduction 
in k ~ right up to zero is observed in this region only at a certain high speed (y = 2500). 
Thus, the combination Re = 30,400 and y = 2500 is an example of the flow condition when the 
initially introduced fluctuation in the flow model is fully degenerated in the settling pro- 
cess. 

The distributions of the nondimensional eddy viscosity coefficient v~ = vt/~ and the 
quantity l ~ = c3/~k3/2/gh characterizing turbulence scale are shown in Fig. 2 for the same 
pair Re, y. A reduction in the characteristic shear layer thickness, naturally, leads to a 
reduction in the scale of energy-containing vortices. The latter also causes a sharp drop 

0 with an increase in y, in spite of a weak change in fluctuations in the wall layer. in ~t 

The distributions of nondimensional velocity components determined with the use of wall 
layer scales are shown in Fig. 3 (the notation is the same as in Fig. I), where w, = V, x 
/~os~,, u, = V, sf~n~,, V, = T~*/p, T* is the modulus of total shear stress at the wall, 
~, = arctan (T~/T~), ~, = ~V,/v. 

637  



f5 

7, 0,102 . ,"d~ iO 

~o zoo 

. ~ 5 

10 ~ 2~" 50 
0 ,,...2 - 0 
7,0, 0,5 0 0,5 ,7 lo o ~0 ~ 

Fig. 2 Fig. 3 

The dependence of W/w, on ~,, even at very high rotational speeds, has regions close to 
the "universal" logarithmic law (dashed line) for the two-dimensional boundary layer. We 
also note that the maximum in the U(~,)/u, profile is located in the transition region from 
the viscous sublayer to the turbulent region. 

4. A large number of computed variants was used to determine the relation between the 
coefficient of resistance of the rotating channel 

4 h  a p *  

W ~  Oz 
a n d  t h e  p a r a m e t e r s  Re and  y ( F i g .  4 ,  c u r v e s  1-5  c o r r e s p o n d  t o  y = 0 ;  500 ;  1000;  2 0 0 0 ;  and  
4 0 0 0 ) .  The d a s h e d  l i n e  e x t e n s i o n  t o  t h e  c u r v e  1 h a s  b e e n  p l o t t e d  a c c o r d i n g  t o  [ 8 ] .  The 
straight line 6 corresponds to resistance law in plane-parallel fixed channel flow with a 
laminar regime (% = 24/Re). The branches of curves 2-5 for laminar and turbulent flows are 
conditionally connected by dashed lines. The determination of converging solution in these 
ranges of Re is difficult and the narrowing of the uncertainty interval is associated with 
large computational time. 

It is not possible to carry out a direct verification of the adequacy of the present 
turbulence model because of the absence of experimental data on the characteristics of fully 
developed flow as well as on pressure losses in a slet-shapedchannel with the present orien- 
tation. However, comparison with results [4] from square channel is in favor of the model. 
Through an analysis of experimentally determined relations for the coefficient of resistance, 
an attempt was made in [4] to determine the zone of transition on the Re, K = 4y/Re plane to 
turbulent flow in the rotating channel. The error in the data obtained for critical values 
of Re, is about 30% when K = const. Points on the error bound region in Re, are shown in 
Fig. 4 where the black symbols indicate the lower bounds and the open symbols are for higher 
bounds. Such a good agreement between computed and experimental data on the determination 
of the influence of rotation on laminar--turbulent transition can be considered remarkable 
with reference to the difference in geometric forms. It is worth keeping in view, however, 
that the sharp variation in the relations %(Re, y = const) or X(Re, K = const) for rapidly 
rotating square channels is due to the very turbulization of the near-wall Ekman layers at 
the surfaces perpendicular to the axis of rotation. The last statement is based on the real- 
ization of the crucial contribution made by these layers to the total surface resistance. 
Thus, from the point of view of the determination of pressure loss, it is possible to con- 
sider the flow in a square channel (2h • 2h) as a part of a slot-type channel with length 2h 
along the x axis. With such an approach, the results of the comparison made in Fig. 4 do not 
appear to be so unexpected. 

5. The results of the present problem could be used for the practical estimation of 
secondary flows in the core of the flow and for the determination of the limits of applica- 

bility of the technique to divide the flow into the core and the near-wall Ekman layer, which 
makes it possible to develop effective approximate solutions to more complex internal flow 
problems involving rotating systems. The near-wall shear layer thickness is characterized 
by two quantities, the first one ~I being determined by the condition IW/Wc -- II ~ 0.01 for 
(h-iy) > ~l, and the second ~2 is equal to the distance from the wall to the point at which 
the transverse velocity component changes sign. We also introduce mass flow circulating in 
the direction of x axis, 
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and nondimensionalize thicknesses 61 and 62 with respect to the thickness [15] of the linear 
Ekman layer 8 = /~/~ and the quantity q with respect to WcS. 

It is expedient to use the quantity Re 8 = Wc//V~as the reference parameter of the flow 
in the near-wall layers. Actually, when u § ~, Re/y = const the characteristic thickness of 
the Ekman layer decreases monotonically (Sz,2/h + 0), the velocity W c tends to the mean flow 
value Wm, and the quantity h drops out of the characteristic flow parameters in the layer. 
The remaining quantities ~, ~, W c § Wm may be used to obtain a unique nondimensional combina- 
tion Re 8. In the general case, when the quantity T is not very large, we should write 

8 ~ / 8 =  fz(Re~, ?), 82/6 = F2(Res, 7), q/(Wc 6) = fa(Re~, y). 

The r e l a t i o n  b e t w e e n  t h e  f u n c t i o n s  F i ( i  = 1, 2, 3) and Res ,  y i s  shown in  F i g .  5; f o r  
t he  c u r v e s  1 -3 ,  T = 1000, 2000,  and 4000.  When Re 8 ~ 300,  F i i s  c o n s t a n t ,  which  c o r r e s p o n d s  
to  l a m i n a r  f l o w  in  t h e  Ekman l a y e r .  A f t e r  a b r e a k  a t  Re 8 = 300,  i n d i c a t i n g  t r a n s i t i o n  to  
t u r b u l e n t  f l o w ,  t h e  q u a n t i t y  F i m o n o t o n i c a l l y  i n c r e a s e s  w i t h  Re 8. I t  i s  i n t e r e s t i n g  t h a t  a t  
y = 4000 in  t h e  computed  r a n g e  of  Res ,  t h e  q u a n t i t y  F i ~ l n R e  8 . 

The r e l a t i o n  q / ( h  -- 82)W c = F 3 / ( T  1/2 -- F2) c o u l d  be c o n s i d e r e d  an e s t i m a t e  of  t h e  s t r e n g t h  
of  t he  s e c o n d a r y  f l o w  in  t h e  c o r e  f o r  t h e  g i v e n  T and Rer R e / 2 u  
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FLOW OVER LAMBDA WINGS WITH FLAPS 

O. N. Ivanov and A. I. Shvets UDC 533.6.011.55+629.782.015.3 

Flow over wings of lambda-shaped cross section and over star-shaped bodies has been in- 
vestigated in [I-5]. 

For control of an aircraft in the cruise regime and also for takeoff and landing one 
must have mechanical devices Such as flaps. Their effectiveness depends considerably on 
boundary layer separation. Separation on two-dimensional and axisymmetric bodies, and also 
three-dimensional separation in flow over obstacles have been studied in a number of papers, 
but as yet limited data are available on boundary layer separation on triangular wings with 
flaps [6]. No data have as yet been published On lambda wings with flaps. 

The flow and boundary layer separation on lambda-shaped wings with flaps have been in- 
vestigated in a supersonic wind tunnel at M = 0.3-3 and Re c = (I-3)'106 . We tested three 
models of triangular lambda wings with vertex angles A = 180, 160, 121 ~ and sweepback angle 
in the wing plane of X = 71~ (Fig. I). For all three models the flap slope angle was 6 = 0 
and 40 ~ , and for the model with vertex angle A = 161 ~ we also tested at 6 = 21 ~ . The ~Jing 
span for all three models was R = 140 mm, and the thickness was 10 mm. The wing leading edges 
were made sharp, with a wedge angle of B = 25 ~ , to obtain an attached Shock wave at M = 3. 
The models were attached to the s-mechanism by means of a rear sting with d = 28 mm and ~ = 
200 mm, in the form of a half cylinder with a wedge cutaway (# = 20 ~ ) along the central chord 
of the leeward side of the lambda wing. The pressure at points on the model surface with 
coordinates s along the central chord c = 200 mm was measured with an induction sensor, with 
the aid of a pressure commutator. The relative error of pressure measurement was • The 
oil film method was used to investigate the stream lines and the separation boundaries on the 
surface of the wing and the flap. 

We shall examine the influence of the vertex an~le A (Fig. la, ~ = 15 ~ M = 3, ~ = 40 ~ , 
points I-3 refer to A = 180, 161, 120 ~ ) and the flap deflection angle ~ (Fig. Ib, ~ = 15 ~ , 
M = 3, A = 161 ~ points 4-6 refer to ~ = 0.21, 40 ~ ) on the pressure distribution and the lo- 
cation of the separation point. The pressure distribution curves on the lambda wings and in 
the plane of the triangular wing (A = 180 ~ ) are similar, while the pressure on the flap con- 
tinues to increase as the angle A is reduced. It was established from the pressure measure- 
ments of [6] that the nature of the pressure distribution changes very little over the span 
of a plane triangular wing, in spite of the flow being three-dimensional in this zone. How- 
ever, the pressure on the flap varies appreciably over its span because of the intense spread- 
ing of the flow, and the maximum pressure is found in the central part. The vertex angle 
A = 161 ~ is close to the optimal angle of A = 150 ~ to certain the maximum lift-to-drag ratio 
in the class of equivalent wings [4]. On this lambda wing model we studied the flow for 
three values of the flap deflection angle (6 = 0.21, 40 ~ ) (see Fig. Ib). The flap deflection 
at angle 6 = 21 ~ for ~ = 0 gives a sharp pressure increase only on the flap, and at ~ = 15 ~ 
in the immediate vicinity of the wing-flap discontinuity (s/c = --0.025) (see Fig. Ib), which 
agrees with the results of [6], where nonseparated flow was found at hypersonic speeds for a 
plane triangular wing with flap deflection angles ~ < 20 ~ In addition, for this flap we 
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